A q -analogue of the Riordan group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Double Riordan Group

The Riordan group is a group of infinite lower triangular matrices that are defined by two generating functions, g and f . The kth column of the matrix has the generating function gfk. In the Double Riordan group there are two generating function f1 and f2 such that the columns, starting at the left, have generating functions using f1 and f2 alternately. Examples include Dyck paths with level s...

متن کامل

The Riordan group

Shapiro, L.W., S. Getu, W.-J. Woan and L.C. Woodson, The Riordan group, Discrete Applied Mathematics 34 (1991) 229-239.

متن کامل

The Sheffer group and the Riordan group

We define the Sheffer group of all Sheffer-type polynomials and prove the isomorphism between the Sheffer group and the Riordan group. An equivalence of the Riordan array pair and generalized Stirling number pair is also presented. Finally, we discuss a higher dimensional extension of Riordan array pairs. AMS Subject Classification: 05A15, 11B73, 11B83, 13F25, 41A58

متن کامل

THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP

In [6], we defined q-analogues of alien derivations and stated their basic properties. In this paper, we prove the density theorem and the freeness theorem announced in loc. cit..

متن کامل

Hecke Operators on the q-Analogue of Group Cohomology

We construct the q-analogue of a certain class of group cohomology and introduce the action of Hecke operators on such cohomology. We also show that such an action determines a representation of a Hecke ring in each of the associated group cohomology spaces. MSC 2000: 20G10, 11F60 (primary); 11F75, 18G99 (secondary)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2013

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.10.024